calcium reacts with chlorine to form

WHAT IS CHLORINATION FACT SHEET

What is Chlorination?

Microorganisms can be found in raw water from rivers, lakes and groundwater. While not all microorganisms are harmful to human health, there are some that may cause diseases in humans. These are called pathogens. Pathogens present in water can be transmitted through a drinking water distribution system, causing waterborne disease in those who consume it.

In order to combat waterborne diseases, different disinfection methods are used to inactivate pathogens. Along with other water treatment processes such as coagulation, sedimentation, and filtration, chlorination creates water that is safe for public consumption.

Chlorination is one of many methods that can be used to disinfect water. This method was first used over a century ago, and is still used today. It is a chemical disinfection method that uses various types of chlorine or chlorine-containing substances for the oxidation and disinfection of what will be the potable water source.

The History of Chlorination

Chlorine was first discovered in Sweden in 1744. At that time, people believed that odours from the water were responsible for transmitting diseases. In 1835, chlorine was used to remove odours from the water, but it wasn’t until 1890 that chlorine was found to be an effective tool for disinfecting; a way to reduce the amount of disease transmitted through water. With this new find, chlorination began in Great Britain and then expanded to the United States in 1908 and Canada by 1917. Today, chlorination is the most popular method of disinfection and is used for water treatment all over the world.

Why do we Chlorinate our water?

A large amount of research and many studies have been conducted to ensure success in new treatment plants using chlorine as a disinfectant. A leading advantage of chlorination is that it has proven effective against bacteria and viruses; however, it cannot inactivate all microbes. Some protozoan cysts are resistant to the effects of chlorine.

In cases where protozoan cysts are not a major concern, chlorination is a good disinfection method to use because it is inexpensive yet effective in disinfecting many other possibly present contaminants. The chlorination process is also fairly easy to implement, when compared to other water treatment methods. It is an effective method in water emergency situations as it can eliminate an overload of pathogens relatively quickly. An emergency water situation can be anything from a filter breakdown to a mixing of treated and raw water.

How does Chlorine Inactivate Microorganisms?

Chlorine inactivates a microorganism by damaging its cell membrane. Once the cell membrane is weakened, the chlorine can enter the cell and disrupt cell respiration and DNA activity (two processes that are necessary for cell survival).

When/How do We Chlorinate Our Waters?

Chlorination can be done at any time/point throughout the water treatment process – there is not one specific time when chlorine must be added. Each point of chlorine application will subsequently control a different water contaminant concern, thus offering a complete spectrum of treatment from the time the water enters the treatment facility to the time it leaves.

Pre-chlorination is when chlorine is applied to the water almost immediately after it enters the treatment facility. In the pre-chlorination step, the chlorine is usually added directly to the raw water (the untreated water entering the treatment facility), or added in the flash mixer (a mixing machine that ensures quick, uniform dispersion of the chlorine). Chlorine is added to raw water to eliminate algae and other forms of aquatic life from the water so they won’t cause problems in the later stages of water treatment. Pre-chlorination in the flash mixer is found to remove tastes and odours, and control biological growth throughout the water treatment system, thus preventing growth in the sedimentation tanks (where solids are removed from the water by gravity settling) and the filtration media (the filters through which the water passes after sitting in the sedimentation tanks). The addition of chlorine will also oxidize any iron, manganese and/or hydrogen sulphide that are present, so that they too can be removed in the sedimentation and filtration steps.

Disinfection can also be done just prior to filtration and after sedimentation. This would control the biological growth, remove iron and manganese, remove taste and odours, control algae growth, and remove the colour from the water. This will not decrease the amount of biological growth in the sedimentation cells.

Chlorination may also be done as the final step in the treatment process, which is when it is usually done in most treatment plants. The main objective of this chlorine addition is to disinfect the water and maintain chlorine residuals that will remain in the water as it travels through the distribution system. Chlorinating filtered water is more economical because a lower CT value is required. This is a combination of the concentration (C) and contact time (T). The CT concept is discussed later on in this fact sheet. By the time the water has been through sedimentation and filtration, a lot of the unwanted organisms have been removed, and as a result, less chlorine and a shorter contact time is required to achieve the same effectiveness. To support and maintain the chlorine residual, a process called re-chlorination is sometimes done within the distribution system. This is done to ensure proper chlorine residual levels are maintained throughout the distribution system.

Residual Chlorine, Breakpoint

Any type of chlorine that is added to water during the treatment process will result in the formation of hypochlorous acid (HOCl) and hypochlorite ions (OCl-), which are the main disinfecting compounds in chlorinated water. More detail is provided later on in this fact sheet.

This post was last modified on Tháng mười một 26, 2024 3:41 chiều