Đề bài
Phương pháp giải
+ Gọi chiều rộng mảnh vườn là x, đặt điều kiện, tính chiều dài mảnh vườn theo x.
+ Sử dụng điều kiện diện tích để lập phương trình ẩn x.
+ Giải phương trình ẩn x, tìm nghiệm x, đối chiếu với điều kiện để tìm giá trị x thỏa mãn điều kiện.
Lời giải của GV Loigiaihay.com
Gọi chiều rộng của mảnh vườn là x (m, \(x > 0\)) thì chiều dài hình chữ nhật là \(x + 6\left( m \right)\)
Diện tích mảnh vườn là: \(x\left( {x + 6} \right)\left( {{m^2}} \right)\)
Vì diện tích mảnh vườn là \(280{m^2}\) nên ta có:
\(x\left( {x + 6} \right) = 280\)
\({x^2} + 6x - 280 = 0\)
Ta có: \(\Delta ' = {3^2} + 280 = 289 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 3 + \sqrt {289} = 14 \left( {tm} \right)\), \({x_2} = - 3 - \sqrt {289} = -20 \left( L \right)\).
Do đó, chiều rộng của mảnh vườn là \( 14 \left( m \right)\), chiều dài của mảnh vườn là \(14 + 6 = 20 \left( m \right)\).
Các bài tập cùng chuyên đề
Bài 1 :Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(y = x + 3 - m\) cắt parabol \(y = {x^2}\) tại hai điểm phân biệt. Xem lời giải >>Bài 2 :
Giải các phương trình sau:
a) \(2{x^2} + \frac{1}{3}x = 0\);
b) \({\left( {3x + 2} \right)^2} = 5\).
Xem lời giải >>
Bài 4 :
Kích thước màn hình ti vi hình chữ nhật được xác định bằng độ dài đường chéo. Ti vi truyền thống có định dạng 4:3, nghĩa là tỉ lệ giữa chiều dài và chiều rộng của màn hình là 4:3. Hỏi diện tích của màn hình ti vi truyền thống 37in là bao nhiêu? Diện tích của màn hình ti vi LCD 37 in có định dạng 16:9 là bao nhiêu? Màn hình ti vi nào có diện tích lớn hơn? Ở đây, các diện tích màn hình được tính bằng inch vuông.
Xem lời giải >>
Bài 6 :
a) Bằng cách đưa về dạng phương trình tích, hãy giải các phương trình sau:
i) \(3{x^2} - 12x = 0\)
ii) \({x^2} - 16 = 0\)
b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phép biến đổi nào?
Xem lời giải >>
Bài 8 :
Giải các phương trình:
a) \(5{x^2} + 7x = 0\)
b) \(5{x^2} - 15 = 0\)
Xem lời giải >>
Bài 10 :
Giải các phương trình
a) \({x^2} - x - 5 = 0\)
b) \(2{x^2} - 0,5x - 0,03 = 0\)
c) \( - 16{x^2} + 8x - 1 = 0\)
d) \( - 2{x^2} + 5x - 4 = 0\)
e) \(\frac{1}{5}{x^2} - 5 = 0\)
g) \(3{x^2} + \sqrt 2 x = 0\)
Xem lời giải >>
Bài 12 :
Phân tích vế trái của các phương trình sau thành nhân tử rồi giải các phương trình đó:
a) 2x – x2 = 0;
b) \({x^2} - 6x + 9 = \frac{1}{2}\)
Xem lời giải >>
Bài 14 :
Giải các phương trình sau:
a) \(2{x^2} + 3x - 7 = x(x + 3)\)
b) \(\frac{{x(x - 1)}}{3} + 2 = \frac{{x + 5}}{4}\).
Xem lời giải >>
Bài 16 :
Không cần giải phương trình, hãy xác định các hệ số a, b, c, tính biệt thức \(\Delta \) và xác định số nghiệm của mỗi phương trình sau:
a) \(11{x^2} + 13x - 1 = 0\);
b) \(9{x^2} + 42x + 49 = 0\);
c) \({x^2} - 2x + 3 = 0\).
Xem lời giải >>
Bài 18 :
Giải các phương trình:
a) \(2{x^2} - 7x = 0;\)
b) \(- {x^2} + \sqrt 8 x - \sqrt {21} = 0;\)
c) \(- \sqrt 5 {x^2} + 2x + 3\sqrt 5 = 0;\)
d) \(1,5{x^2} - 0,4x - 1,2 = - 1,1{x^2} + 1;\)
e) \(\left( {\sqrt 7 - 2} \right){x^2} + 3x + 10 = {x^2} + 10;\)
g) \(- \sqrt {32} {x^2} - 4x + \sqrt 2 = \sqrt 2 {x^2} + x - \sqrt 8 \)
Xem lời giải >>